Networking &
Parallelism 1

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Networks: Talking to the Outside World

Wawrzynek & Weaver

- Originally sharing I/0O devices between computers
* E.g., printers

- Then communicating between computers
* E.g., file transfer protocol

- Then communicating between people
* E.g., e-mail
- Then communicating between networks of computers

* E.g., file sharing, www, ...

- Then turning multiple cheap systems into a single computer

* Warehouse scale computing
Berkeley EE 2

) www . computerhistory.org/internet history

The Internet (1962

Computer Science 61C
.
 History

* 1963: JCR Licklider, while at DoD’s ARPA, writes a memo
describing desire to connect the computers at various
research universities: Stanford, Berkeley, UCLA, ...

* 1969 : ARPA deploys 4 “nodes” @ UCLA, SR, Utah, &
UCSB

* 1973 Robert Kahn & Vint Cerf invent TCP, now part of the
Internet Protocol Suite

* Internet growth rates
e Exponential since start
* But finally starting to hit human
scale limits although lots of www.greatachievements.org/?id=3736

silicon cockroaches... c . L. .
Berkeley EE. - en.wikipedia.org/wiki/Internet Protocol Suite

The World Wide Web (1989)

en.wikipedia.org/wiki/History of the World Wide Web

Computer Science 61C Wawrzynek & Weaver

- “System of interlinked hypertext documents on the - |
Internet” Yy -
_ -
+ History '
; \!
* 1945: Vannevar Bush describes hypertext system called A et

“memex” in article L)
World’s First web

* 1989: Sir Tim Berners-Lee proposed and implemented the first Tim Bermers-Lee server in 1990

successful communication between a Hypertext Transfer
Protocol (HTTP) client and server using the internet.

* 1993: NCSA Mosaic: A graphical HTTP client
* ~2000 Dot-com entrepreneurs rushed in, 2001 bubble burst

« Today : Access anywhere!

Sub e hng

Tim Berners-Lee,

Tanagement: A Proposal

Information Management: A Proposal
4/22/16
Berkeley EE Abstract 4

Shared vs. Switch-Based Networks

Wawrzynek & Weaver

« Shared vs. Switched: Shared

e Shared: 1 at a time (CSMA/CD) Node| |Node| |Node

e Switched: pairs (* ” connections) _f_l_ﬁ

communicate at same time

- Aggregate bandwidth (BW) in switched Nodel Crossbar
network is many times that of shared: r Switch
* point-to-point faster since no arbitration,
simpler interface Node| <« 1”|Node
+ Wired is almost always switched
+ Wireless is by definition shared I'I
4

Berkeley EE Node 5

Shared Broadcast

+ Old-school Ethernet and Wireless
* |t doesn't just share but all others can see the request?

« How to handle access:

* Old when | was old skool: Token ring
+ Asingle "token" that is passed around
e Ethernet:

Listen and send
Randomized retry when someone else interrupts you

 (Cable Modem:

+ "Request to send": small request with a listen and send model

Big transfers then arbitrated
Berkeley EEC 6

What makes networks work?

Wawrzynek & Weaver

* links connecting switches and/or routers to each other and to computers

or devices

Computer

=

network
interface

* ability to name the components and to route
packets of information - messages - from a
source to a destination

Cisco SYSTEMS

L ayering, redundancy, protocols, and
encapsulation as means of abstraction (61C big

Berkeley EE id ea)

V2 Huawel
7

Software Protocol to Send and Receive

- SW Send steps
* 1: Application copies data to OS buffer
e 2: OS calculates checksum, starts timer
* 3: OS sends DMA request to network interface HW and says start

- SW Receive steps
* 3: Network interface copies data from network interface HW to OS buffer, triggers interrupt

* 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer
expires)
* 1:If OK, OS copies data to user address space, & signals application to continue
Dest Src Checksum

Net 1D Net 10 [Lon 7| Gib/ Adéress /bata IR

Berkeley EE - Header Payload Trailer 8

Protocols for Networks of Networks?

What does it take to send packets across the globe?

Bits on wire or air

Packets on wire or air

Delivery packets within a single physical network
Deliver packets across multiple networks

Ensure the destination received the data

Create data at the sender and make use of the data at the
receiver

Berkeley EE

The OSI 7 Layer Network Model

Wawrzynek & Weaver

- A conceptual "Stack"
* Physical Link: eg, the wires/wireless

« Data Link: Ethernet wumpude b M Locst bt b Political
] Application
* Network Layer: IP ———
* Transport Layer: TCP/UDR\V__ Session
» SessiontLayer/Presentationtayer/Application Layer . _Transport
Network
- Session Layer/Presentation Layer really never got used Sota Lok
 Political Layer: "Feinstein/Burr 'thou shalt not encrypt'" Physical

Nick is starting to spend way too much time on "layer 8"

issues
Berkeley EE 10

Protocol Family Concept

 Protocol: packet structure and control commands to manage
communication

 Protocol families (suites): a set of cooperating protocols that
implement the network stack

- Key to protocol families is that communication occurs logically
at the same level of the protocol, called peer-to-peer...
...but is implemented via services at the next lower level

- Encapsulation;)carry higher level information within lower level

“envelope”
Berkeley EEC I

Inspiration...

« CEO Alice writes letter to CEO Bob

e Folds letter and hands it to assistant

- Assistant:
* Puts letter in envelope with CEO Bob’s full name
* Takes to FedEx

- FedEx Office

* Puts letter in larger envelope
* Puts name and street address on FedEx envelope
* Puts package on FedEx delivery truck

- FedEXx delivers to other company

Wawrzynek & Weaver

Dear Bob,

Your days are
numbered.

--Alice

The Path of the Letter

Wawrzynek & Weaver

“Peers” on each side understand the same things
’_/’___v ———————
| 4o No one else needs to

onlY W‘M s \IM has most packaging
o \Vd Semantic Content
WLO‘” CEO Letter CEO
W

al° \ l' Al I dentity T rnp din

Aide QWW Envelope Aide
‘l' Location T

FedEx > FedEx

Fedex Envelope (FE
Berkeley EEC © pe (FE) 5

The Path Through FedEx

Truck Truck
lFE FE FE T
Sorting Sorting Sorting
Office Office N Office

Crate Crate ew
l, 'N, Crate CrateT
Airport > Airport > Airport

Deepest Packaging (Envelope+FE+Crate)

Berkeley EE < at the Lowest Level of Transport)

Protocol Family Concept

Wawrzynek & Weaver

Message Logical Message

—

lActuaI IActuaI

.l Message. Logical .l Message.

lActuaI]Actual

E'.l Message. T E'.l Message. T

Physical

Each lower level of stack “encapsulates” information

from layer above by adding header and trailer.

Most Popular Protocol for Network of Networks

Wawrzynek & Weaver

+ Transmission Control Protocol/Internet Protocol (T CP/IQ
2

 This protocol family is the basis of the Internet, a WAN
(wide area network) protocol

* |P makes best effort to deliver
—_— T T
Packets can be lost, corrupted / /‘Mt(om rdo~
But corrupted packets should be turned into lost packets —D W'{"ﬂ e WV .
e TCP guarantees reliable, in-order delivery of byteskeam
SANAN—

Programs don't see packets, they just read and write strings of bytes

* TCP/IP so popular it is used even when communicating locally: even across
homogeneous LAN (local area network)

Berkeley EE 16

TCP/IP packet, Ethernet packet, protocols

Wawrzynek & Weaver

- Application sends message "Ethernet Hdr |
TCP breaks@into 64KiB \|_IP Header |!
segments*adds 20B ! :

header, e !

P adds 20B header,
sends to network

e If Ethernet, broken into
1500B packets with :_F;hemet_nar

:

|

|

|
<
i
1]
\D
©
o)
]

headers, trailers |00

* Not really. Because of fragments not always working, most
TCP packets are sized so things fit in an Ethernet packet. That =~ ‘e == == = = - - = - |
Berkeley EEC © whole layering business is not as clean as we like... 17

TCP and UDP
The Two Internet Transfer Protocols

« TCP: Transmission Control Protocol
* Connection based
SYN->SYN/ACK->ACK Q'ay handshake
e In order & reliable wii | . e Aew)
PM v 11’ T[ARAL i aj?

All data is acknowledged
Programming interface is streams of data

UDP: Universal Datagram Protocol

* Datagram based
Just send messages ,J/N'P, Thor . .. oF-..
e Qut of order & unreliable
Msman arrive in any order or be dropped (but not corrupted)

—_—

\/ .
* Needed for realtime protocols
Berkeley EE I8

And Switching Gears:
GPIO

- We see how to do high performance I/0O
* CPU has data it wants to send in main memory

» Configures device & DMA controller to initiate transfer
Device then receives the data through DMA

- We have moderate bandwidth, flexible I/0O

* Universal Serial Bus is really a lightweight not-quite-a-network for your slower
peripheral devices

- But what about human scale?
* With people, we only need to react in milliseconds to hours

Wawrzynek & Weaver

Berkeley EE 19

Reminder: Amdahl's Law and Programming Effort

Wawrzynek & Weaver

- Don't optimize where you don't need to

* And if | only need to react at kHz granularity...
But my processor is a GHz...

| have 1 million clock cycles to actually decide what to do!

« So lets provide a simple interface
* Because lets face it, my time is more valuable than the computer's time!
« After all, 1 second of my time is worth 1,000,000,000 instructions!

Berkeley EE 20

Raspberry Pi GPIO

Computer Science 61C Wawrzynek & Weaver

- A set of physical pins hooked up
to the CPU

* The CPU can write and read these pins as
memory, like any other I/O device

- But that is a low level pain for us

humans...

* So the Linux instillation provides "files" that
can access GPIO

* You can literally write a1 ora 0 to a pin
or read the value at a pin

 Plus faster & still simple APIs

Berkeley EE

Pin#

Raspberry Pi2 GPIO Header

NAME

3.3v DC Power
GPIO02 (SDA1 |, I?C)
GPIO03 (SCL1, PC)
GPIO04 (GPIO_GCLK)

Ground
(TXD0) GPIO14

05

09 Ground (RXD0) GPIO15

11 GPIO17 (GPI (GPIO_GENT1) GPIO18 2

13 GPIO27 (GPIO_C Ground

15 GPI022 (GPIO_GENS3) (GPIO_GEN4) GPIO23 6

17 3.3v DC Power SENS) GPIO24 18
% 19 GPIO10 (SPI_MOSI) Ground 20
'8 21 GPIO09 (SPI_MISO) (GPIO_GENG6) GPIO25 22
; 23 GPIO11 (SPI_CLK) _CEO_N) GPIO08 24
u“': 25 Ground E1_N) GPIO07 26

27 ID_SD (I*C ID EEPROM) (I*)C ID EEPROM) ID_SC 28

29 GPIO0S Ground 0

31 GPIO06 GPIO12 32

3 GPIO13 Ground 34

% 5 GPIO19 GPIO16 36
E GPIO26 GPIO20 38
% 39 Ground D © GPIO21 40
E e i http:l.elemem14.com

Using GPIO

Wawrzynek & Weaver

* There are a lot of add-on cards...
* EG, ones for controlling servos

« Or you can build your own
- Combined with USB provides very powerful glue...

- Similarly some even smaller devices:
e Adafruit "Trinket": 8 MHz 8-bit microcontroller, 5 GPIO pins
Get it for $8 at the Jacobs Hall store...
- Big application: Serial LED strings

 (Color LEDs that have a bit-serial interface
Berkeley EEC

« 61C - the big picture

- Parallel processing

- Single instruction, multiple data

- SIMD matrix multiplication

« Loop unrolling

- Memory access strategy - blocking
- And in Conclusion, ...

Berkeley EE

Wawrzynek & Weaver

23

61C Topics so far ...

* What we learned:
e Binary numbers
- C
* Pointers
* Assembly language
* Processor micro-architecture
e Pipelining
e Caches
* Floating point

- What does this buy us?

* Promise: execution speed

e Let’s check!
Berkeley EE 24

Reference Problem

« Matrix multiplication
* Basic operation in many engineering, data, and imaging processing tasks
+ Ex:, Image filtering, noise reduction, ...
* Core operation in Neural Nets and Deep Learning

Image classification (cats ...)
* Robot Cars
+ Machine translation ¥ - Ahways has been
+ Fingerprint verification
Automatic game playing

 dgemm
» double-precision floating-point general
matrix-multiply

» Standard well-studied and widely used routine

+ Part of Linpack/Lapack
Berkeley EE

2D-Matrices

Wawrzynek & Weaver

« Square matrix of dimension NxN J .
* iindexes through rows 0 N-1
* jindexes through columns 0
L
\/
N-1

Berkeley EEC ”%

Matrix Multiplication

C=A'B
Cij = 2k (A ™ By)

Berﬁ@l@}oﬁE

27

2D Matrix Memory Layout

- a[][] in C uses row-major Row-Major Column-Major
 Fortran uses column-major a3 a1
. a2 az1
+ Our examples use column-major A an
ROW aio ao1
. ao3 aso
dij 200 o
aoo |Ao1 |Ao2 |Ao3 ao1 ao
ato [an [ar2 a3 Row 1800 Column 400

d2o |A21 |A22 (@23

aso (A3t (@32 |As3 a” . a[I*N + J] alj : a[l + J*N]

Berkeley EE 28

Simplifying Assumptions...

Wawrzynek & Weaver

- We want to keep the examples (somewhat) manageable...

- We will keep the matrixes square

* So both matrixes are the same size
with the same number of rows and columns

- We will keep the matrixes reasonably aligned
* So size % a reasonable power of 2 ==

Berkeley EE 29

dgemm Reference Code: Python

def dgemm(N, a, b, c):
for i in range(N):
for j in range(N):
c[i+j*N] = O
for k in range(N):
c[i+j*N] += a[i+k*N] * b[k+J*N]

? . 1 MFLOP = 1 Million floating-

point operations per second
100 >0 (fadd, fmul)

480 5.4] o~
960 5 3 dgemm(N ...) takes 2*N8 flops

Berkeley EE 30

C

c=a’b
* a, b, care N x N matrices
r/ C~ ar- '_‘;-‘,ck\l

void dgémﬁ_scéiak(int‘N, double *a, double xb, double xc) {
for (int i=0@; i<N; i++)
for (int j=@; j<N; j++) {
double cij = 0;
for (int k=0; k<N; k++)
// alil [k] « b[k]l[j]
cij += ali+k#«N] * bl[k+j*N];
// clil[j]
cli+j*N] = cij;

Berkeley EE 31

Timing Program Execution

ComputerScience6C__ \Wawrzynek&Weaver.
#include <stdio.h=>
#include <stdlib.h=>
#include <time.h=>

int main(void) <
// start time
// Note: clock() measures execution time, not real time
// big difference in shared computer environments
// and with heavy system load
clock t start = clock();

// task to time goes here:
// dgemm(N, ...);

// ''stop'" the timer
clock _t end = clock();

// compute execution time in seconds
double delta_time = (double) (end—-start)/CLOCKS_PER_SEC;
he

Berkeley EE :

C versus Python

“ C[FLOPS] Python [GFLOPS]

1.30 0.0054
160 1.30 0.0055
480 1.32 0.0054
960 0.91 0.0053

Which other class gives you this kind of power?
We could stop here ... but why? Let’s do better!

Berkeley EEC 3

Agenda

Computer Science 61C Wawrzynek & Weaver

« 61C — the big picture

- Parallel processing

- Single instruction, multiple data

« SIMD matrix multiplication
 Amdahl’s law

* Loop unrolling

- Memory access strategy - blocking
« And in Conclusion, ...

Berkeley EE 34

Why Parallel Processing?

Wawrzynek & Weaver

« CPU Clock Rates are no longer increasing

* Technical & economic challenges

Advanced cooling technology too expensive or impractical for most applications
Energy costs are prohibitive

- Parallel processing is only path to higher speed

* Compare airlines:

Maximum air-speed limited by economics
Use more and larger airplanes to increase throughput
(And smaller seats ...)

Berkeley EE 35

Using Parallelism for Performance

Wawrzynek & Weaver

- Two basic approaches to parallelism:
* Multiprogramming

run multiple independent programs in parallel
“Easy”

* Parallel computing

run one program faster
“Hard”

- We’ll focus on parallel computing in the next few lectures

Berkeley EE: 36

Single-Instruction/Single-Data Stream (SISD)

Wawrzynek & Weaver

« Sequential computer that exploits no parallelism in either the instruction or

data streams. Examples of SISD architecture are traditional uniprocessor
machines

— E.g. Our RISC-V processor
— We consider superscalar as SISD because the programming model is sequential

SISD | Instruction Pool I

J Processing Unit

Data Pool

This is what we did up to now in 61C

Berkeley EE

37

Single-Instruction/Multiple-Data Stream
(SIMD or “sim-dee”)

Wawrzynek & Weaver

« SIMD computer processes multiple data streams using a
single instruction stream, e.g., Intel SIMD instruction
extensions or NVIDIA Graphics Processing Unit (GPU)

SIMD | Instruction Pool |

PU|~

PU|—

Data Pool

PU|~—

PU|- Today’s topic.

Berkeley EE 38

Multiple-Instruction/Multiple-Data Streams
(MIMD or “mim-dee”)

Wawrzynek & Weaver

processors simultaneously
executing different instructions

g i S on different data.
al * MIMD architectures include multicore
_,% PU and Warehouse-Scale Computers
Qo
PU

Topic of Lecture 22 and beyond.

B erkeley EE 39

Multiple-Instruction/Single-Data Stream
(MISD)

Wawrzynek & Weaver

« Multiple-Instruction, Single-

118 Instructi Pool
MIsD mermemen e Data stream computer that
processes multiple instruction
streams with a single data
— stream.
g Lpul< L.[pyul— * Historical significance
o
/

This has few applications. Not covered in 61C.

Berkeley EE 40

Flynn* Taxonomy, 1966

Data Streams
Multiple

instriction Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86
Streams Multiple MISD: No examples today MIMD: Intel Xeon €5345 (Clovertown)

« SIMD and MIMD are currently the most common
parallelism in architectures — usually both in same
system!

* Most common parallel processing programming
style: Single Program Multiple Data (“SPMD?”) vorof. Michael

* Single program that runs on all processors of a MIMD Flynn, Stanford

* Cross-processor execution coordination using
synchronization primitives

Berkeley EE 41

Agenda

Computer Science 61C Wawrzynek & Weaver

- 61C — the big picture

» Parallel processing

- Single instruction, multiple data
« SIMD matrix multiplication

- Amdahl’s law

* Loop unrolling

- Memory access strategy - blocking
« And in Conclusion, ...

Berkeley EE 4

SIMD - “Single Instruction Multiple Data”

SIMD Instruction Pool
| PU|—
E > PU -—
g
(=]
(=] > | PU |~
> PU |«

Berkeley EE 43

SIMD (Vector) Mode

SIMD Mode Scalar Mode

. LD EE EE D
® T E B

ﬁu H+H

Bﬂ@@lg)}ﬂ;E Lecture 18: Parallel Processing - SIMD "

SIMD Applications & Implementations

« Applications

* Scientific computing
Matlab, NumPy

* Graphics and video processing
Photoshop, ...

* Big Data
Deep learning

* Gaming

* Implementations
* x86
« ARM
* RISC-V vector extensions

¢ \Video cards
Berkeley EE 5

First SIMD Extensions:
MT Lincoln Labs TX-2, 1957

Wawrzynek & Weaver

4 3 2
QNE 36 BITAE D| ______ L H A
. E 1 -
(36) cl ______ Loomoon R R
A . e m [P | S .
B ' 1
‘OPERAND WORD
STRUCTURE tsl 35
' 4 3 2
TwowseitaEs o . ___ v 1lE______ HER
(18,18) < SR SN f R ; ______
A ———————] - - - - d - -
B]]
OPERAND WORD
STRUCTURE sl 7 INE 17
4 3 2
ONE27BIT& O | _._______ ____ R b
ONE9BITAE c|___~ "~ R R I
(27,9) Al ______ R H B
B [\
OPERAND WORD
STRUCTURE sl 26) 18l
4 3 2
FoureBITAEsO | ______|l______1V______| o
(9,9,9,9) cl{-__--77] I & I
A
B r _______ e e ed e a -
OPERANTC WORD

structure 1sL_8 ISl 8 sl e JIs| & | "

|nte| X86 SIMD: Continuous Evolution

MMX 1997
1999 20 2004 2006 2007 2008 2009 2010\11
SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 AES-NI AVX

70 instr

Single-
Precision
Vectors

Streaming
operations

Berkeley EE

144 instr

Double-
precision
Vectors

8/16/32

64/128-bit
vector
integer

SCIENCES

13 instr 32 instr
Complex Decode
Data

47 instr
Video

Graphics
building
blocks

Advanced
vector instr

8 instr

String/XML
processing

POP-Count
CRC

7 instr

Encryption
and
Decryption

Key
Generation

~100 new
instr.

~300 legacy
sse instr
updated

256-bit
vector

3 and 4-
operand
instructions

47

Intel Advanced Vector eXtensions

2011

Comp

87 GFLOPS

32 nm
SSE 4.2
DDR3
PCle2

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

2012

185 GFLOPS

Sandy
Bridge

32 nm

AVX

(256 bit
registers)

DDR3
PCle3

2013

~225 GFLOPS

lvy Bridge

22 nm

~500 GFLOPS

22 nm
AVX2

(new

instructions)

(

tbd GFLOPS

Broadwell

14 nm

etting wider, instruction set getting richer

tbd GFLOPS

S ELE

14 nm
AVX 3.2

(512 bit

registers)
DDR4

PCled

AVX also supported by AMD processors

https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/ 48

Laptop CPU Specs

$ sysctl -a | grep cpu

hw.physicalcpu: 4
hw.logicalcpu: 8

machdep.cpu.brand_string: Intel(R) Core(TM) i5-1038NG7 CPU @ 2.00GHz

machdep.cpu.features: FPU VME DE PSE TSC MSR PAE MCE CX8 APIC SEP MTRR PGE MCA CMOV
PAT PSE36 CLFSH DS ACPI MMX FXSR SSE SSE2 SS HTT TM PBE SSE3 PCLMULQDQ DTES64 MON
DSCPL VMX EST TM2 SSSE3 FMA CX16 TPR PDCM SSE4.1 SSE4.2 x2APIC MOVBE POPCNT AES PCID
XSAVE OSXSAVE SEGLIM64 TSCTMR AVX1.0 RDRAND F16C

machdep.cpu.leaf7 features: RDWRFSGS TSC_THREAD OFFSET SGX BMI1 AVX2 FDPEO SMEP BMI2
ERMS INVPCID FPU_CSDS AVX512F AVX512DQ RDSEED ADX SMAP AVX512IFMA CLFSOPT IPT
AVX512CD SHA AVX512BW AVX512VL AVX512VBMI UMIP PKU GFNI VAES VPCLMULQDQ AVX512VNNTIT
AVX512BITALG AVX512VPOPCNTDQ RDPID SGXLC FSREPMOV MDCLEAR IBRS STIBP L1DF ACAPMSR
SSBD

machdep.cpu.extfeatures: SYSCALL XD 1GBPAGE EM64T LAHF LZCNT PREFETCHW RDTSCP TSCI

Berkeley EE 49

AVX SIMD Registers:
Greater Bit Extensions Overlap Smaller Versions

Wawrzynek & Weaver

256 bits 128 bits

YMNIO
Z

YMNILS
Z

255 128 127 0
Bit #
Berkeley EE 50

Intel SIMD Data Types

SSE and AVX-128 types

AVX-256 types

(AVX-512 available (but not on Hive so you can't use on Proj 4):
16x float and 8x double)...

But latest: Intel has decided to basically give up on AVX-512 going forward!

Alder Lake's "efficient" cores don't include it so it is turned off!
Berkeley EE

4x float

2x double

16x byte

8x 16-bit word

4x 32-bit doubleword
2x 64-bit quadword

1x 128-bit doublequadword

8x float

4x double

Agenda

Computer Science 61C Wawrzynek & Weaver

- 61C — the big picture

» Parallel processing

- Single instruction, multiple data

- SIMD matrix multiplication

* Loop unrolling

- Memory access strategy - blocking
« And in Conclusion, ...

Berkeley EE 52

Problem

Wawrzynek & Weaver

- Today’s compilers can generate SIMD code
- But in some cases, better results by hand (assembly)

- We will study x86 (not using RISC-V as no vector hardware
widely available yet)
e Over 1000 instructions to learn ...
* Or to google, either one...
- Can we use the compiler to generate all non-SIMD
instructions?

Berkeley EE 53

x86 SIMD

(intel Intrinsics Guide

Technologies

MMX
SSE
SSE2

“Intrinsics”

The Intel Intrinsics Guide is an interactive reference tool for Intel intrinsic instructions, which are C style functions that provide access to *

many Intel instructions - including Intel® SSE, AVX, AVX-512, and more - without the need to write assembly code.

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

AVX2

FMA

AVX-512
KNC

SVML
Other

Categories

Application-Targeted
Arithmetic

Bit Manipulation
Cast

Compare

Convert
Cryptography
Elementary Math

Functions

General Sunnort

mul_pd
Intrinsic
__m256d _mm256_mul_pd (__m256d a, __m256d
Synopsis
__m256d _mm256_mul_pd (__m256d a, __m256d b)

#include <immintrin.h>

Instruction: vmulpd ymm, ymm, ymm «— assembly |nStrUCt|On
CPUID Flags: AVX
Description

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

e ey 4 parallel multiplies
T i = j%64
dst[i+63:1] := ali+63:1i] * b[i+63:i]
ENDFOR

dst[MAX:256]1 := 0

Performance

Architecture Latency Through pu‘t(}al)

. . 2 instructions per clock cycle (CPI = 0.5)

Skyiake “—>—4 cycles latency (data hazard time...)

Haswell 5 0.5

Broadwell 3

x86 Intrinsics AVX Data Types

Computer Science 61C Wawrzynek & Weaver

Intrinsics: Direct access to assembly from C

m256 256-bit as eight single-precision floating-point values, representing a YMM register or
o memory location

m256d4 256-bit as four double-precision floating-point values, representing a YMM register or
memory location

m256i 256-bit as integers, (bytes, words, etc.)
ml28 128-bit single precision floating-point (32 bits each)

__ml28d 128-bit double precision floating-point (64 bits each)

Berkeley EEC & 55

Intrinsics AVX Code Nomenclature

Marking Meaning
[s/d] Single- or double-precision floating point
[i/u]lnnn Signed or unsigned integer of bit size nnn, where nnn is 128, 64, 32, 16, or 8

[ps/pd/sd] Packed single, packed double, or scalar double
epi32 Extended packed 32-bit signed integer

si256 Scalar 256-bit integer

Berkeley EEC 56

Raw Double-Precision Throughput

Computer Science 61C

Characteristic

CPU i7-5557U
Clock rate (sustained) 3.1 GHz
Instructions per clock (mul_pd) 2
Parallel multiplies per instruction 4

Peak double FLOPS 24.8 GFLOPS

GFLOP/sec

10*

10

102

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs =——e—

NVIDIA Tesla GPUs +
AMD Radeon GPUs —.—

[O P T LR

5
Q!)
& & & INTEL Xeon Phis —age—
2008 2010 2012 2014 2016
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-
time/

Actual performance is lower because of overhead

Berkeley EE

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

57

Vectorized Matrix Multiplication

Computer Science 61C Wawrzynek & Weaver
/
fori...; i+=4 | += 4 >
Inner Loop: forj ...
__m256d co = {0,0,0,0}; k
for (int k=0; k<N; k++) {
c@ = _mm256_fmadd_pd/(
_mm256_load_pd(a+i+kxN),
_mm256_broadcast_sd(b+k+j*N),
co);
¥
_mm256_store_pd(c+i+j*N, c0); \ 4
K
-
[
Berkeley EE

“Vectorized” dgemm

ComputerScience61C____________________________
v01d dgemm avx(lnt N, double *a, double *b, double xc) {
ope ates on 1 |l274>_1"']') a e
for (int i=0@; i<N; i+=4) {
for (1nt j= @ j<N; j++) {
@ il [j
m256d c@ = {0,0,0,0};
for (int k=0; k<N; k++) {
cO = _mm256_ add pd(
co, alil] [k) [K]
mm256 mul pd(
_mm256_load_pd(a+i+kxN),
_mm256_broadcast_sd(b+k+j*xN)));

WJ.M

b3
_mm256_store_pd(c+i+j*N, c0Q); /, [i,j] = co

¥

Berkeley EE 59

Performance

“ scalar avx

32 1.30 4.56
160 1.30 5.47
480 1.32 5.27
960 0.91 3.64
« 4x faster

« But still << theoretical 25 GFLOPS!

Agenda

Computer Science 61C Wawrzynek & Weaver

- 61C — the big picture

» Parallel processing

- Single instruction, multiple data

« SIMD matrix multiplication

* Loop unrolling

- Memory access strategy - blocking
« And in Conclusion, ...

Berﬁ@l@}oﬁE Lecture 18: Parallel Processing - SIMD ol

Loop Unrolling

+ On high performance processors,
optimizing compilers performs “loop
unrolling” operation to expose more
parallelism and improve performance:

for(i=0; i<N; i++)

x[1i] = x[i] + s;
+ Could become:

for(i=0; i<N; i+=4) {
x[1i] = x[i] + s;
x[i+1l] = x[i+1l] + s;
x[i+2] = x[i+2] + s;
x[i+3] = x[i+3] + s;

Berkeley EE

Wawrzynek & Weaver

. EXpose data-level parallelism

for vector (SIMD) instructions or
super-scalar multiple instruction
issue

. Mix pipeline with unrelated

operations to help with reduce
hazards

. Reduce loop “overhead”
. Makes code size larger

62

Amdahl’s Law™ applied to dgemm

Wawrzynek & Weaver

- Measured dgemm performance

* Peak 5.5 GFLOPS
* Large matrices 3.6 GFLOPS
* Processor 24.8 GFLOPS

- Why are we not getting (close to) 25 GFLOPS?

* Something else (not floating-point ALU) is limiting performance!

* But what? Possible culprits:

Cache
Hazards
Let’s look at both!

Berkeley EE 63

“Vectorized” dgemm:
Pipeline Hazards

Computer Science 61C Wawrzynek & Weaver

// A\ intrinsics; &H p. 227
v01d dgemm avx(lnt N, double *a, double *b ‘double *xc) {
avx operates on 4 doubles 1in
for (1nt 1—0 i<N; i+=4) {
for (1nt j= 0 j<N; j++) {
0 = il 3]
m256d co = {0,0,0,0};
for (int k=0; k<N; k++) {
cO = _mm256_ add pd(

co, ' alillkl * blkllj] 4‘-----
mm256 mul pd(
_mm256_load_pd(a+i+kxN),
_mm256_broadcast_sd(b+k+j*N)));
3
_mm256_store_pd(c+i+j*N, c@); // cli,il = co

b
b
“add_pd” depends on result of “mult_pd” which depends on “load_pd”

Berkeley EE 4

Loop Unrolling

// Loop unrolling: P&H p. 352
[const int UNROLL = 4; =

void dgemm_unroll(int n, double *xA, double *B, double *xC) {
for (int i=@; i<n; 1i+= UNROLLx%4) {
for (int j=0; j<n; j++) {.
_ m256d cl[4]; <=md registers
for (int x=0; Xx<UNROLL; x++)
clx] = _mm256_1load_pd(C+i+x*x4+j*n) ;
for (int k=0; k<n; k++) {
__m256d b = _mm256_broadcast_sd(B+k+j*n);
for (int x=0; x<UNROLL; x++) === Compiler does the unrolling
c[x] = _mm256_add_pd(c[x],
_mm256_mul_pd(_mm256_1load_pd(A+nkxk+x*x4+i), b));
¥
for (int x=0; x<UNROLL; x++)
_mm256_store_pd(C+i+x*4+j*n, cl[x]);

¥ How do you verify that the generated code is actually unrolled?

Berkeley EE 65

Performance

“ scalar avx unroll

32 1.30 4.56 12.95
160 1.30 5.47
480 1.32 5.27 1450

960 0.91 3.64 P,

Berkeley EE 66

Agenda

Computer Science 61C Wawrzynek & Weaver

- 61C — the big picture

» Parallel processing

- Single instruction, multiple data

« SIMD matrix multiplication

- Amdahl’s law

* Loop unrolling

- Memory access strategy - blocking
« And in Conclusion, ...

Berﬁg’l@}OEE Lecture 18: Parallel Processing - SIMD o7

FPU versus Memory Access

Wawrzynek & Weaver

- How many floating-point operations does matrix multiply
take?
* F = 2 x N3 (N3 multiplies, N3 adds)

« How many memory load/stores?
*M =3 x N2 (for A, B, C)

- Many more floating-point operations than memory accesses
eq=F/M=2/3*N
* Good, since arithmetic is faster than memory access
* Let’s check the code ...

Berkeley EE 68

But memory is accessed repeatedly

Wawrzynek & Weaver

- g=F/M=1.6! (1.25 loads and 2 floating-point operations)

Inner loop:
for (int k=0; k<N; k++) {
c@ = _mm256_add_pd(

co,

_mm256_mul_pd/(
_mm256__load_pd(a+i+kxN),
_mm256_broadcast_sd(b+k+j*N)));

¥

Berkeley EE 69

On-Chip Components
Control
Datapath §
T

Speed (cycles): 2's 1’s 10’s
Size (bytes): 100’s 10K’s M’s

Secondary
Main Memory
Memory (Disk
Or Flash)

(DRAM)

100’s-1000 1,000,000’s
G’s T’s
lowest

Cost/bit: highest
« Where are the operands (A, B, C) stored?

« What happens as N increases?

+ |Idea: arrange that most accesses are to fast cachel!

Berkeley EE

70

Blocking
Computer Science 61C Wawrzynek & Weaver

* ldea:
* Rearrange code to use values loaded in cache many times

* Only “few” accesses to slow main memory (DRAM) per
floating point operation
-> throughput limited by FP hardware and cache, not slow DRAM

« P&H, RISC-V edition p. 465

71

Berkeley EE

Blocking Matrix Multiply

(divide and conqguer: sub-matrix multiplication)

B TRCICY LT 72

Memory Access Blocking

Computer Science 61C Wawrzynek & Weaver

(e blocking; P&

const int BLOCKSIZE = 32;

void do_block(int n, int si, int sj, int sk, double *A, double *B, double *C) {
for (int i=si; i<si+BLOCKSIZE; i+=UNROLL*4)
for (int j=sj; j<sj+BLOCKSIZE; j++) {
_ _m256d cl4];
for (int x=0; x<UNROLL; x++)
c[x] = _mm256_1load_pd(C+i+x*4+j*n) ;
for (int k=sk; k<sk+BLOCKSIZE; k++) {
_ m256d b = _mm256_broadcast_sd(B+k+j*n);
for (int x=0; x<UNROLL; Xx++)
c[x] = _mm256_add_pd(c[x],
_mm256_mul_pd(_mm256_Tload_pd (A+nkxk+x*x4+i), b));
}
for (int x=0; x<UNROLL; x++)
_mm256_store_pd(C+i+x*x4+j*n, c[x]);

¥

void dgemm_block(int n, doublex A, doublex B, doublex C) {
for(int sj=0; sj<n; sj+=BLOCKSIZE)
for(int si=@; si<n; si+=BLOCKSIZE)
for (int sk=@; sk<n; sk += BLOCKSIZE)
do_block(n, si, sj, sk, A, B, C);

¥
Berkeley EE 73

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Performance

- B

32
160
480
960

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

scalar
1.30
1.30
1.32
0.91

avx
4.56
5.47
5.27
3.64

unroll
12.95
19.70
14.50
6.91

blocking
13.80
21.79
20.17
15.82

74

And in Conclusion, ...

Wawrzynek & Weaver

- Approaches to Parallelism
* SISD, SIMD, MIMD (next lecture)

- SIMD

* One instruction operates on multiple operands simultaneously

- Example: matrix multiplication
* Floating point heavy -> exploit Moore’s law to make fast

B erkeley EE 75

