
Computer Science 61C Wawrzynek & Weaver

Networking &  
Parallelism 1

1

Computer Science 61C Wawrzynek & Weaver

Networks: Talking to the Outside World

• Originally sharing I/O devices between computers

• E.g., printers

• Then communicating between computers

• E.g., file transfer protocol

• Then communicating between people

• E.g., e-mail

• Then communicating between networks of computers

• E.g., file sharing, www, …

• Then turning multiple cheap systems into a single computer

• Warehouse scale computing

2

Computer Science 61C Wawrzynek & Weaver

The Internet (1962) www.computerhistory.org/internet_history

www.greatachievements.org/?id=3736
en.wikipedia.org/wiki/Internet_Protocol_Suite

“Lick”

Vint Cerf
“Revolutions like this don't

come along very often”

• History

• 1963: JCR Licklider, while at DoD’s ARPA, writes a memo

describing desire to connect the computers at various
research universities: Stanford, Berkeley, UCLA, ...

• 1969 : ARPA deploys 4 “nodes” @ UCLA, SRI, Utah, &
UCSB

• 1973 Robert Kahn & Vint Cerf invent TCP, now part of the
Internet Protocol Suite

• Internet growth rates

• Exponential since start

• But finally starting to hit human 

scale limits although lots of  
silicon cockroaches...

3

Computer Science 61C Wawrzynek & Weaver

The World Wide Web (1989)
en.wikipedia.org/wiki/History_of_the_World_Wide_Web

Tim Berners-Lee
World’s First web
server in 1990

4/22/16

• “System of interlinked hypertext documents on the
Internet”

• History

• 1945: Vannevar Bush describes hypertext system called

“memex” in article

• 1989: Sir Tim Berners-Lee proposed and implemented the first

successful communication between a Hypertext Transfer
Protocol (HTTP) client and server using the internet.

• 1993: NCSA Mosaic: A graphical HTTP client

• ~2000 Dot-com entrepreneurs rushed in, 2001 bubble burst

• Today : Access anywhere!

4

Computer Science 61C Wawrzynek & Weaver

Shared vs. Switch-Based Networks

• Shared vs. Switched:

• Shared: 1 at a time (CSMA/CD)

• Switched: pairs (“point-to-point” connections)

communicate at same time

• Aggregate bandwidth (BW) in switched

network is many times that of shared:

• point-to-point faster since no arbitration,

simpler interface

• Wired is almost always switched

• Wireless is by definition shared

Node Node Node
Shared

Crossbar
Switch

Node

Node

Node

Node

5

Computer Science 61C Wawrzynek & Weaver

Shared Broadcast

• Old-school Ethernet and Wireless

• It doesn't just share but all others can see the request?

• How to handle access:

• Old when I was old skool: Token ring

• A single "token" that is passed around

• Ethernet:

• Listen and send

• Randomized retry when someone else interrupts you

• Cable Modem:

• "Request to send": small request with a listen and send model

• Big transfers then arbitrated

6

Computer Science 61C Wawrzynek & Weaver

What makes networks work?

• links connecting switches and/or routers to each other and to computers
or devices

Computer

network

interface

switch

switch

switch

• ability to name the components and to route
packets of information - messages - from a
source to a destination
• Layering, redundancy, protocols, and

encapsulation as means of abstraction (61C big
idea)

7

Computer Science 61C Wawrzynek & Weaver

Software Protocol to Send and Receive

• SW Send steps

• 1: Application copies data to OS buffer

• 2: OS calculates checksum, starts timer

• 3: OS sends DMA request to network interface HW and says start

• SW Receive steps

• 3: Network interface copies data from network interface HW to OS buffer, triggers interrupt

• 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer

expires)

• 1: If OK, OS copies data to user address space, & signals application to continue

Header Payload

Checksum

 Trailer
CMD/ Address /DataNet ID Net ID Len ACK

INFO

Dest Src

8

Computer Science 61C Wawrzynek & Weaver

Protocols for Networks of Networks?

What does it take to send packets across the globe?

• Bits on wire or air

• Packets on wire or air

• Delivery packets within a single physical network

• Deliver packets across multiple networks

• Ensure the destination received the data

• Create data at the sender and make use of the data at the

receiver
9

Computer Science 61C Wawrzynek & Weaver

The OSI 7 Layer Network Model

• A conceptual "Stack"

• Physical Link: eg, the wires/wireless

• Data Link: Ethernet

• Network Layer: IP

• Transport Layer: TCP/UDP

• Session Layer/Presentation Layer/Application Layer

• Session Layer/Presentation Layer really never got used

• Political Layer: "Feinstein/Burr 'thou shalt not encrypt'"

• Nick is starting to spend way too much time on "layer 8"

issues
10

Political
Application

Presentation
Session

Transport
Network
Data Link
Physical

Computer Science 61C Wawrzynek & Weaver

Protocol Family Concept

• Protocol: packet structure and control commands to manage
communication

• Protocol families (suites): a set of cooperating protocols that
implement the network stack

• Key to protocol families is that communication occurs logically
at the same level of the protocol, called peer-to-peer… 
…but is implemented via services at the next lower level

• Encapsulation: carry higher level information within lower level
“envelope”

11

Computer Science 61C Wawrzynek & Weaver

Inspiration…

• CEO Alice writes letter to CEO Bob

• Folds letter and hands it to assistant

• Assistant:

• Puts letter in envelope with CEO Bob’s full name

• Takes to FedEx

• FedEx Office

• Puts letter in larger envelope

• Puts name and street address on FedEx envelope

• Puts package on FedEx delivery truck

• FedEx delivers to other company

Dear Bob,

Your days are
numbered.

 --Alice

12

Computer Science 61C Wawrzynek & Weaver

CEO

Aide

FedEx

CEO

Aide

FedExLocation
Fedex Envelope (FE)

The Path of the Letter

13

Letter

Envelope

Semantic Content

Identity

“Peers” on each side understand the same things

No one else needs to

Lowest level has most packaging

Computer Science 61C Wawrzynek & Weaver

The Path Through FedEx

14

Truck

Sorting

Office

Airport

FE
Sorting

Office

Airport

Truck

Sorting

Office

Airport
Crate Crate

FE

New

Crate Crate

FE

Deepest Packaging (Envelope+FE+Crate)

at the Lowest Level of Transport

Computer Science 61C Wawrzynek & Weaver

Protocol Family Concept

Message Message

TH Message TH Message TH TH
Actual Actual

Physical

Message TH Message TH
Actual ActualLogical

Logical

15

Each lower level of stack “encapsulates” information
from layer above by adding header and trailer.

Computer Science 61C Wawrzynek & Weaver

Most Popular Protocol for Network of Networks

• Transmission Control Protocol/Internet Protocol (TCP/IP)

• This protocol family is the basis of the Internet, a WAN

(wide area network) protocol

• IP makes best effort to deliver

• Packets can be lost, corrupted

• But corrupted packets should be turned into lost packets

• TCP guarantees reliable, in-order delivery of a bytestream

• Programs don't see packets, they just read and write strings of bytes

• TCP/IP so popular it is used even when communicating locally: even across

homogeneous LAN (local area network)
16

Computer Science 61C Wawrzynek & Weaver

Message

TCP/IP packet, Ethernet packet, protocols

• Application sends message

TCP data

TCP Header
IP Header

IP DataEH

Ethernet Hdr

Ethernet Hdr
•TCP breaks into 64KiB
segments*, adds 20B
header
• IP adds 20B header,
sends to network
• If Ethernet, broken into
1500B packets with
headers, trailers

17

* Not really. Because of fragments not always working, most
TCP packets are sized so things fit in an Ethernet packet. That

whole layering business is not as clean as we like...

Computer Science 61C Wawrzynek & Weaver

TCP and UDP 
The Two Internet Transfer Protocols
• TCP: Transmission Control Protocol

• Connection based

• SYN->SYN/ACK->ACK 3-way handshake

• In order & reliable

• All data is acknowledged

• Programming interface is streams of data

• UDP: Universal Datagram Protocol

• Datagram based

• Just send messages

• Out of order & unreliable

• Datagrams can arrive in any order or be dropped (but not corrupted)

• Needed for realtime protocols
18

Computer Science 61C Wawrzynek & Weaver

And Switching Gears: 
GPIO
• We see how to do high performance I/O

• CPU has data it wants to send in main memory

• Configures device & DMA controller to initiate transfer

• Device then receives the data through DMA

• We have moderate bandwidth, flexible I/O

• Universal Serial Bus is really a lightweight not-quite-a-network for your slower

peripheral devices

• But what about human scale?

• With people, we only need to react in milliseconds to hours

19

Computer Science 61C Wawrzynek & Weaver

Reminder: Amdahl's Law and Programming Effort

• Don't optimize where you don't need to

• And if I only need to react at kHz granularity... 

But my processor is a GHz...

• I have 1 million clock cycles to actually decide what to do!

• So lets provide a simple interface

• Because lets face it, my time is more valuable than the computer's time!

• After all, 1 second of my time is worth 1,000,000,000 instructions!

20

Computer Science 61C Wawrzynek & Weaver

Raspberry Pi GPIO

• A set of physical pins hooked up
to the CPU

• The CPU can write and read these pins as

memory, like any other I/O device

• But that is a low level pain for us

humans...

• So the Linux instillation provides "files" that

can access GPIO

• You can literally write a 1 or a 0 to a pin 

or read the value at a pin

• Plus faster & still simple APIs

21

Computer Science 61C Wawrzynek & Weaver

Using GPIO

• There are a lot of add-on cards...

• EG, ones for controlling servos

• Or you can build your own

• Combined with USB provides very powerful glue...

• Similarly some even smaller devices:

• Adafruit "Trinket": 8 MHz 8-bit microcontroller, 5 GPIO pins 

Get it for $8 at the Jacobs Hall store...

• Big application: Serial LED strings

• Color LEDs that have a bit-serial interface

22

Computer Science 61C Wawrzynek & Weaver

Agenda

• 61C – the big picture

• Parallel processing

• Single instruction, multiple data

• SIMD matrix multiplication

• Loop unrolling

• Memory access strategy - blocking

• And in Conclusion, …

23

Computer Science 61C Wawrzynek & Weaver

61C Topics so far …

• What we learned:

• Binary numbers

• C

• Pointers

• Assembly language

• Processor micro-architecture

• Pipelining

• Caches

• Floating point

• What does this buy us?

• Promise: execution speed

• Let’s check!

24

Computer Science 61C Wawrzynek & Weaver

Reference Problem

• Matrix multiplication

• Basic operation in many engineering, data, and imaging processing tasks

• Ex:, Image filtering, noise reduction, …

• Core operation in Neural Nets and Deep Learning

• Image classification (cats …)

• Robot Cars

• Machine translation

• Fingerprint verification

• Automatic game playing

• dgemm

• double-precision floating-point general  

matrix-multiply

• Standard well-studied and widely used routine

• Part of Linpack/Lapack

25

Computer Science 61C Wawrzynek & Weaver

2D-Matrices

• Square matrix of dimension NxN

• i indexes through rows

• j indexes through columns

26

N-1

N-1

0
0

Computer Science 61C Wawrzynek & Weaver

Matrix Multiplication

CS 61c
27

 C = A*B
Cij = Σk (Aik * Bkj)

A

B

C

Computer Science 61C Wawrzynek & Weaver

2D Matrix Memory Layout

• a[][] in C uses row-major

• Fortran uses column-major

• Our examples use column-major

28

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

aij

a13
a12
a11
a10
a03
a02
a01
a00Row

Row

Row-Major Column-Major

aij : a[i*N + j] aij : a[i + j*N]

a31
a21
a11
a01
a30
a20
a10
a00Column

Computer Science 61C Wawrzynek & Weaver

Simplifying Assumptions…

• We want to keep the examples (somewhat) manageable…

• We will keep the matrixes square

• So both matrixes are the same size 

with the same number of rows and columns

• We will keep the matrixes reasonably aligned

• So size % a reasonable power of 2 == 0

29

Computer Science 61C Wawrzynek & Weaver

dgemm Reference Code: Python

30

N Python [Mflops]
32 5.4
160 5.5
480 5.4
960 5.3

• 1 MFLOP = 1 Million floating-
point operations per second
(fadd, fmul)

• dgemm(N …) takes 2*N3 flops

Computer Science 61C Wawrzynek & Weaver

C

• c = a * b

• a, b, c are N x N matrices

31

Computer Science 61C Wawrzynek & Weaver

Timing Program Execution

32

Computer Science 61C Wawrzynek & Weaver

C versus Python

Which other class gives you this kind of power?
We could stop here … but why? Let’s do better!

33

N C [GFLOPS] Python [GFLOPS]
32 1.30 0.0054
160 1.30 0.0055
480 1.32 0.0054
960 0.91 0.0053

240x!

Computer Science 61C Wawrzynek & Weaver

Agenda

• 61C – the big picture

• Parallel processing
• Single instruction, multiple data

• SIMD matrix multiplication

• Amdahl’s law

• Loop unrolling

• Memory access strategy - blocking

• And in Conclusion, …

34

Computer Science 61C Wawrzynek & Weaver

Why Parallel Processing?

• CPU Clock Rates are no longer increasing

• Technical & economic challenges

• Advanced cooling technology too expensive or impractical for most applications

• Energy costs are prohibitive

• Parallel processing is only path to higher speed

• Compare airlines:

• Maximum air-speed limited by economics

• Use more and larger airplanes to increase throughput

• (And smaller seats …)

35

Computer Science 61C Wawrzynek & Weaver

Using Parallelism for Performance

• Two basic approaches to parallelism:

• Multiprogramming

• run multiple independent programs in parallel

• “Easy”

• Parallel computing

• run one program faster

• “Hard”

• We’ll focus on parallel computing in the next few lectures

36
CS 61c

Computer Science 61C Wawrzynek & Weaver

Single-Instruction/Single-Data Stream (SISD)

• Sequential computer that exploits no parallelism in either the instruction or
data streams. Examples of SISD architecture are traditional uniprocessor
machines

－E.g. Our RISC-V processor

－We consider superscalar as SISD because the programming model is sequential

37

Processing Unit

This is what we did up to now in 61C

Computer Science 61C Wawrzynek & Weaver

Single-Instruction/Multiple-Data Stream 
(SIMD or “sim-dee”)
• SIMD computer processes multiple data streams using a

single instruction stream, e.g., Intel SIMD instruction
extensions or NVIDIA Graphics Processing Unit (GPU)

38

Today’s topic.

Computer Science 61C Wawrzynek & Weaver

Multiple-Instruction/Multiple-Data Streams 
(MIMD or “mim-dee”)

• Multiple autonomous
processors simultaneously
executing different instructions
on different data.

• MIMD architectures include multicore

and Warehouse-Scale Computers

39

Instruction Pool

PU

PU

PU

PUDa
ta

 P
oo

l

Topic of Lecture 22 and beyond.

Computer Science 61C Wawrzynek & Weaver

Multiple-Instruction/Single-Data Stream 
(MISD)

• Multiple-Instruction, Single-
Data stream computer that
processes multiple instruction
streams with a single data
stream.

• Historical significance

40

This has few applications. Not covered in 61C.

Computer Science 61C Wawrzynek & Weaver

Flynn* Taxonomy, 1966

• SIMD and MIMD are currently the most common
parallelism in architectures – usually both in same
system!

• Most common parallel processing programming
style: Single Program Multiple Data (“SPMD”)

•Single program that runs on all processors of a MIMD

•Cross-processor execution coordination using

synchronization primitives
41

*Prof.	Michael	
Flynn,	Stanford

Computer Science 61C Wawrzynek & Weaver

Agenda

• 61C – the big picture

• Parallel processing

• Single instruction, multiple data
• SIMD matrix multiplication

• Amdahl’s law

• Loop unrolling

• Memory access strategy - blocking

• And in Conclusion, …

42

Computer Science 61C Wawrzynek & Weaver

SIMD – “Single Instruction Multiple Data”

43

Computer Science 61C Wawrzynek & Weaver

Lecture 18: Parallel Processing - SIMD

SIMD (Vector) Mode

CS 61c
44

Computer Science 61C Wawrzynek & Weaver

SIMD Applications & Implementations

• Applications

• Scientific computing

• Matlab, NumPy

• Graphics and video processing

• Photoshop, …

• Big Data

• Deep learning

• Gaming

• Implementations

• x86

• ARM

• RISC-V vector extensions

• Video cards

45

Computer Science 61C Wawrzynek & Weaver

First SIMD Extensions: 
MIT Lincoln Labs TX-2, 1957

46
CS 61c

Computer Science 61C Wawrzynek & Weaver

47

Intel x86
MMX 1997

Computer Science 61C Wawrzynek & Weaver

48https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

AVX also supported by AMD processors

Computer Science 61C Wawrzynek & Weaver

Laptop CPU Specs

$ sysctl -a | grep cpu

hw.physicalcpu: 4
hw.logicalcpu: 8

machdep.cpu.brand_string: Intel(R) Core(TM) i5-1038NG7 CPU @ 2.00GHz

machdep.cpu.features: FPU VME DE PSE TSC MSR PAE MCE CX8 APIC SEP MTRR PGE MCA CMOV
PAT PSE36 CLFSH DS ACPI MMX FXSR SSE SSE2 SS HTT TM PBE SSE3 PCLMULQDQ DTES64 MON
DSCPL VMX EST TM2 SSSE3 FMA CX16 TPR PDCM SSE4.1 SSE4.2 x2APIC MOVBE POPCNT AES PCID
XSAVE OSXSAVE SEGLIM64 TSCTMR AVX1.0 RDRAND F16C
machdep.cpu.leaf7_features: RDWRFSGS TSC_THREAD_OFFSET SGX BMI1 AVX2 FDPEO SMEP BMI2
ERMS INVPCID FPU_CSDS AVX512F AVX512DQ RDSEED ADX SMAP AVX512IFMA CLFSOPT IPT
AVX512CD SHA AVX512BW AVX512VL AVX512VBMI UMIP PKU GFNI VAES VPCLMULQDQ AVX512VNNI
AVX512BITALG AVX512VPOPCNTDQ RDPID SGXLC FSREPMOV MDCLEAR IBRS STIBP L1DF ACAPMSR
SSBD
machdep.cpu.extfeatures: SYSCALL XD 1GBPAGE EM64T LAHF LZCNT PREFETCHW RDTSCP TSCI

49

Computer Science 61C Wawrzynek & Weaver

AVX SIMD Registers: 
Greater Bit Extensions Overlap Smaller Versions

50

Computer Science 61C Wawrzynek & Weaver

Intel SIMD Data Types

51

(AVX-512 available (but not on Hive so you can't use on Proj 4):  
16x float and 8x double)...

But latest: Intel has decided to basically give up on AVX-512 going forward! 
Alder Lake's "efficient" cores don't include it so it is turned off!

Computer Science 61C Wawrzynek & Weaver

Agenda

• 61C – the big picture

• Parallel processing

• Single instruction, multiple data

• SIMD matrix multiplication
• Loop unrolling

• Memory access strategy - blocking

• And in Conclusion, …

52

Computer Science 61C Wawrzynek & Weaver

Problem

• Today’s compilers can generate SIMD code

• But in some cases, better results by hand (assembly)

• We will study x86 (not using RISC-V as no vector hardware

widely available yet)

• Over 1000 instructions to learn …

• Or to google, either one...

• Can we use the compiler to generate all non-SIMD
instructions?

53

Computer Science 61C Wawrzynek & Weaver

x86 SIMD “Intrinsics”

54

4 parallel multiplies

2 instructions per clock cycle (CPI = 0.5)

assembly instruction

Intrinsic

4 cycles latency (data hazard time...)

Computer Science 61C Wawrzynek & Weaver

x86 Intrinsics AVX Data Types

55

Intrinsics: Direct access to assembly from C

Computer Science 61C Wawrzynek & Weaver

Intrinsics AVX Code Nomenclature

56

Computer Science 61C Wawrzynek & Weaver

Raw Double-Precision Throughput

Characteristic Value

CPU i7-5557U
Clock rate (sustained) 3.1 GHz
Instructions per clock (mul_pd) 2
Parallel multiplies per instruction 4

Peak double FLOPS 24.8 GFLOPS

57

Actual performance is lower because of overhead
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-
time/

Computer Science 61C Wawrzynek & Weaver

Vectorized Matrix Multiplication

Inner Loop:

for i …; i+=4
 for j ... i += 4

Computer Science 61C Wawrzynek & Weaver

“Vectorized” dgemm

59

Computer Science 61C Wawrzynek & Weaver

Performance

N
Gflops

scalar avx
32 1.30 4.56
160 1.30 5.47
480 1.32 5.27
960 0.91 3.64

60

• 4x faster

• But still << theoretical 25 GFLOPS!

Computer Science 61C Wawrzynek & Weaver

Lecture 18: Parallel Processing - SIMD

Agenda

• 61C – the big picture

• Parallel processing

• Single instruction, multiple data

• SIMD matrix multiplication

• Loop unrolling
• Memory access strategy - blocking

• And in Conclusion, …

CS 61c
61

Computer Science 61C Wawrzynek & Weaver

Loop Unrolling

• On high performance processors,
optimizing compilers performs “loop
unrolling” operation to expose more
parallelism and improve performance:

	 for(i=0; i<N; i++)

 x[i] = x[i] + s;
• Could become:

	 for(i=0; i<N; i+=4) {

 x[i] = x[i] + s;

x[i+1] = x[i+1] + s;
x[i+2] = x[i+2] + s;
x[i+3] = x[i+3] + s;
}

62

1. Expose data-level parallelism
for vector (SIMD) instructions or
super-scalar multiple instruction
issue

2. Mix pipeline with unrelated
operations to help with reduce
hazards

3. Reduce loop “overhead”

4. Makes code size larger

Computer Science 61C Wawrzynek & Weaver

Amdahl’s Law* applied to dgemm

• Measured dgemm performance

• Peak 5.5 GFLOPS

• Large matrices 3.6 GFLOPS

• Processor 24.8 GFLOPS

• Why are we not getting (close to) 25 GFLOPS?

• Something else (not floating-point ALU) is limiting performance!

• But what? Possible culprits:

• Cache

• Hazards

• Let’s look at both!

63

Computer Science 61C Wawrzynek & Weaver

“Vectorized” dgemm:  
Pipeline Hazards

64

“add_pd” depends on result of “mult_pd” which depends on “load_pd”

Computer Science 61C Wawrzynek & Weaver

Loop Unrolling

65

Compiler does the unrolling

How do you verify that the generated code is actually unrolled?

4 registers

Computer Science 61C Wawrzynek & Weaver

Performance

N
Gflops

scalar avx unroll
32 1.30 4.56 12.95
160 1.30 5.47 19.70
480 1.32 5.27 14.50
960 0.91 3.64 6.91

66

?
WOW!

Computer Science 61C Wawrzynek & Weaver

Lecture 18: Parallel Processing - SIMD

Agenda

• 61C – the big picture

• Parallel processing

• Single instruction, multiple data

• SIMD matrix multiplication

• Amdahl’s law

• Loop unrolling

• Memory access strategy - blocking
• And in Conclusion, …
CS 61c

67

Computer Science 61C Wawrzynek & Weaver

FPU versus Memory Access

• How many floating-point operations does matrix multiply
take?

•F = 2 x N3 (N3 multiplies, N3 adds)

• How many memory load/stores?

•M = 3 x N2 (for A, B, C)

• Many more floating-point operations than memory accesses

•q = F/M = 2/3 * N

•Good, since arithmetic is faster than memory access

•Let’s check the code …

68

Computer Science 61C Wawrzynek & Weaver

But memory is accessed repeatedly

• q = F/M = 1.6! (1.25 loads and 2 floating-point operations)

69

Inner loop:

Computer Science 61C Wawrzynek & Weaver

70

Second
-Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk

Or Flash)

On-Chip Components

RegFile

Main

Memory

(DRAM)Data

Cache
Instr

Cache

Speed (cycles): ½’s 1’s 10’s 100’s-1000 1,000,000’s
Size (bytes): 100’s 10K’s M’s G’s T’s

• Where are the operands (A, B, C) stored?

• What happens as N increases?

• Idea: arrange that most accesses are to fast cache!

 Cost/bit: highest lowest

Third-
Level

Cache

(SRAM)

Computer Science 61C Wawrzynek & Weaver

Blocking

• Idea:

• Rearrange code to use values loaded in cache many times

• Only “few” accesses to slow main memory (DRAM) per  

floating point operation

• -> throughput limited by FP hardware and cache, not slow DRAM

• P&H, RISC-V edition p. 465

71

Computer Science 61C Wawrzynek & Weaver

Blocking Matrix Multiply

(divide and conquer: sub-matrix multiplication)

72

X =

X =

X =

X =

X =

X =

Computer Science 61C Wawrzynek & Weaver

Memory Access Blocking

73

Computer Science 61C Wawrzynek & Weaver

Performance

N
Gflops

scalar avx unroll blocking
32 1.30 4.56 12.95 13.80
160 1.30 5.47 19.70 21.79
480 1.32 5.27 14.50 20.17
960 0.91 3.64 6.91 15.82

74

Computer Science 61C Wawrzynek & Weaver

And in Conclusion, …

• Approaches to Parallelism

• SISD, SIMD, MIMD (next lecture)

• SIMD

• One instruction operates on multiple operands simultaneously

• Example: matrix multiplication

• Floating point heavy -> exploit Moore’s law to make fast

75

