
CS61C: Fall 2021 Lecture 20 Input/Output

The 3 "R"s of Computing:

Computer Science 61C Fall 2021

Ron Ayres

Input/output gives computers a way to interact with the world (and us!)

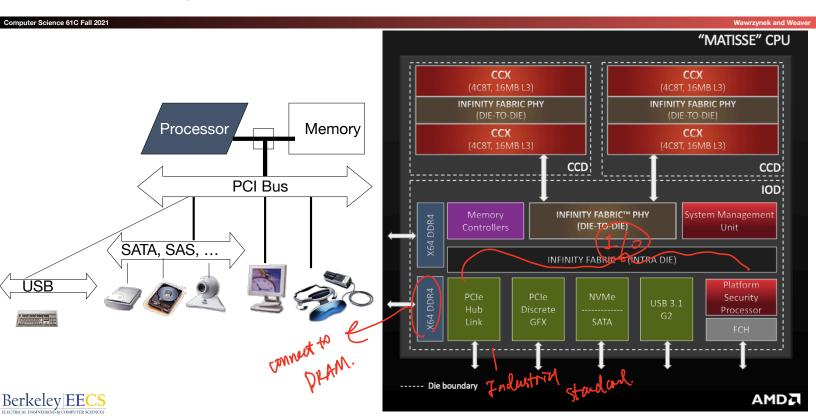
- I/O Devices and Interconnects
- Direct Memory Access
- Disks
- Networking
- And in Conclusion ...

- I/O Devices and Interconnects
- Direct Memory Access
- Disks
- Networking
- And in Conclusion ...

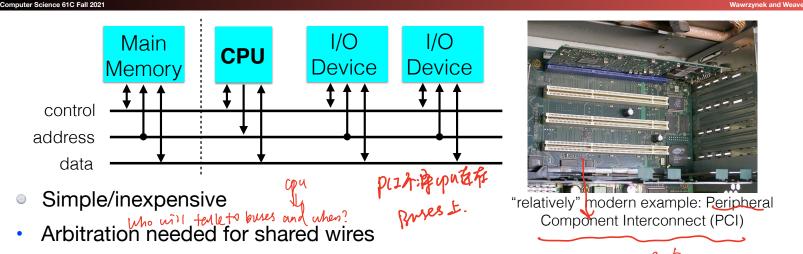
Some Input/output Devices (peripherals):

Computer Science 61C Fall 2021				Wawrzynek and Weaver
name	type	approx. max data-rate	where	use
magnetic disk drive	in/out	200 MB/s	servers, desktops	file system, virtual
solid-state drive (SSD)	in/out	550 MB/s	servers, desktops, laptops, handheld	file system, virtual
display	out	100 MB/s	desktops, laptops, handheld	HCI (images, video)
keyboard	in	10 B/s	desktops, laptops	HCI (typing)
speakers / headphones	out	200 KB/s	desktops, laptops, handheld	HCI (audio)
microphone	in	200 KB/s	desktops, laptops, handheld,	Audio in
mouse	in	100 B/s	laptops	HCI (point/click)
trackpad	in	100 B/s	laptops	HCI (point/click)
inertial measurement unit	in	1 KB/s	handheld, embedded	motion tracking
video camera	in	100 MB/s	desktops, laptops, handheld, embbed	video input
trackball	in	100 B/s	desktops	HCI (point/click)
haptic joystick	in/out	100 B/s	desktops	HCI (point/click)
printer	out	2 KB/s	desktops, laptops	graphics/text
touch screen	in/out	100 B/s, 100MB/s	laptops, handheld	display/point/click
cellular radio	in/out	1 GB/s	handheld	wireless access
compute accelerator	in/out	AFAP	servers, desktops, laptops, handheld	energy efficiency
other computer/server	in/out	AFAP	all	MP/www
your idea here!				

- 1. Extremely wide range of data rates
- 2. Differing physical interfaces
- 3. Device specific semantics (initialization, control, datamovement)
- 4. Unknown future devices



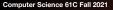
Solutions:

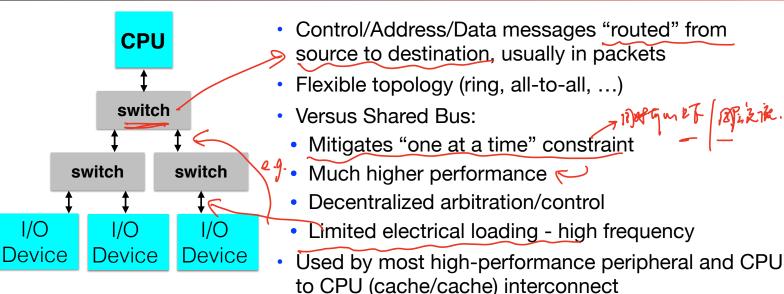

- Present CPU with unified view of device world (abstraction!)
 - Standard Interconnect for connecting to CPU: PCI, USB, SATA, Ethernet
 - Standard programming model
 - devices controlled and data transferred through memory addresses (device registers and buffers) memory mapped I/O
 - OS device drivers: devices abstracted as files a ferrel read while functions. •
 - OS input/output library (device control and data transfer) •
 - Language specific I/O library -prNt f ... •
- Controller/interface chips:
- > to provision convert device physical interface (electrical signal, timing) to standard interconnect
 - contain registers/buffers for memory mapped abstraction
 - In some cases interface chips present compressed view of device (GPU, postscript printers)
- Support for multiple interaction and data transfer models
 - Interrupts, Polling, DMA

opn bightered truthe

Computer system architecture:

Traditional "Bus" based interconnect architecture



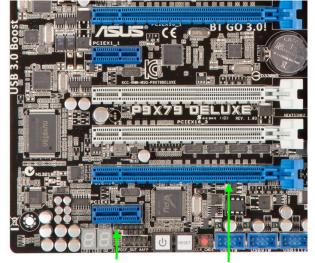

- Capacitance/inductance limits performance / scalability 汁剤がた! 消産を
- Single transfer at a time

Fun facts: 1) The original Ethernet had a shared bus architecture using a single conductor!2) Wireless is often same architecture (ex: WiFi)

Switched Interconnect Architecture

• Ethernet, PCIe, proprietary intra/inter processor interconnect

Wawrzvnek and Weave


Peripheral Component Interconnect (PCI) / PCIe details

Computer Science 61C Fall 2021

- PCI (1992/1993) shared bus
 - 32-bit / 33MHz 133MB/sec
 - 64-bit / 66MHz 533MB/sec
- PCI-X (1999)
 - Up to 1066MB/sec with 64-bit / 133MHz
- PCI Express aka PCIe (2002): switched point-to-point
 - Version 5: 32 GT/s, yielding 63 GB/s in each direction in a 16-lane configuration
- Version 6: 64 GT/s, yielding 126 GB/s in each direction in a 16-lane configuration
 - Directly maps devices to CPU address space (64 bits)
 - Supports interrupts and direct memory access (DMA) (and .
 - Dual Simplex point-to-point serial connection for each link
 - Version 4: 2 GB/s per lane
 I bit at a time . -- high speed !!
 - Capacity scaling from x1 to x16 (1-16 lanes)
 - Packet based transaction protocol
 - Link level ACK/NAK

Berkeley EECS

• End to end CRC error detection - for beliable

x1 x16 PCIe Connectors

Universal Serial Bus (USB) Details

Computer Science 61C Fall 2021

Berkeley EECF the melly

Host Tier

Tier 1

Tier 2

Tier 3

Tier 4

Wawrzynek and Weay

L-com.com

- Specifications for cables, connectors and protocols for connection, communication and power supply between computers, peripherals and other computers. 14 different connectors! USB-C the most recent.
- Bit-serial single lane with (limited) power supplied to peripheral.
- Four generations: USB 1.x, USB 2.0, USB 3.x, and USB4.
- USB1 (1996): 1.5 Mbit/s (Low Speed) and 12 Mbit/s (Full Speed).

- USB4: supports 40 Gbit/s throughput. / hubo (1) . cannot ferminate a Hubs often used but sta • Hubs often used, but structured as a bus not switched interconnect
- Devices cannot interact with one another except via the host.

Rabust 11

- · Self-configuring, no need for the user to adjust the device's settings for speed or data format, and input/output USB2 use some une for addresses.
- · Hot-swappable (devices can be exchanged without rebooting the host computer). gendly and second in finit
- USB cables are limited in length, intended for peripherals on the same table-top, not between rooms or buildings.
- Several different transfer modes (low-latency, streaming real-time data), but no true interrupts.

- I/O Devices and Interconnects
- Direct Memory Access
- Disks
- Networking
- And in Conclusion ...

So What Happens When Data Arrives?

- Input is asynchronous
 - It may occur at any time without coordination with what the OS is doing
- Option 1: Trigger an interrupt
- Jumps control to the interrupt handler which has to figure out what to do...
- Option 2: Wait for the OS to poll the device
 - Its the OS's job to check whether something is available

More on Interrupt-Driven I/O

- Highly responsive
 - When data comes in, the interrupt triggers
- Interesting efficiency tradeoff:
 - For low rate it's very efficient while still very responsive
 - The computer is doing other things except when data comes
 - For high rates it's inefficient
 - Interrupts are relatively expensive!
 You effectively *have* to flush all cache state, flush the pipeline, flush the TLBs etc. going to/from the OS

Common design:

- Interrupts by default
- Then if high rates needed, poll instead
 - Ex: Multi-gigabit Network interfaces

Computer Science 61C Fall 2021

- "Memory mapped I/O": Device control/data registers mapped to CPU address space
- CPU synchronizes with I/O device:
 - Polling
 - Interrupts
- "Programmed I/O"

 Ineffcrut!
 - CPU execs lw/sw instructions for all data movement to/from devices
 - Generally, CPU spends time doing 2 things:
 - · Getting data from device to main memory, from main memory to a device
 - Using data to compute

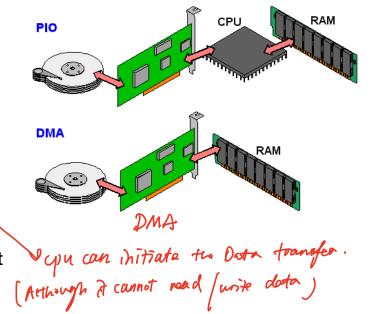
Working with real devices

Computer Science 61C Fall 2021

- "Memory mapped I/O": Device control/data registers mapped to CPU address space
- CPU synchronizes with I/O device:
 - Polling
- Polling
 Interrupts
 <u>"Programmed I/O"</u>: DMA focus on computing.
 - CPU execs lw/sw instructions for all data movement to/from devices
 - CPU spends time doing 1 thing: ٠
 - Getting data from device to main memory, from main memory to a device
 - Using data to compute

What's wrong with Programmed I/O?

- Not ideal because ...
 - CPU has to execute all transfers, could be doing other work
 - Device speeds don't align well with CPU speeds
 - Energy cost of using beefy general-purpose CPU where simpler hardware would suffice
- Until now CPU has sole control of main memory



Direct Memory Access (DMA)

- Allows I/O devices to directly read/write main memory
- New Hardware: the DMA Engine
- DMA engine contains CSR registers written by CPU:
 - Memory address to write/read data,
 - # of bytes

Berkeley EE

- I/O device #, direction of transfer
- unit of transfer, amount to transfer per burst

Operation of a DMA Transfer

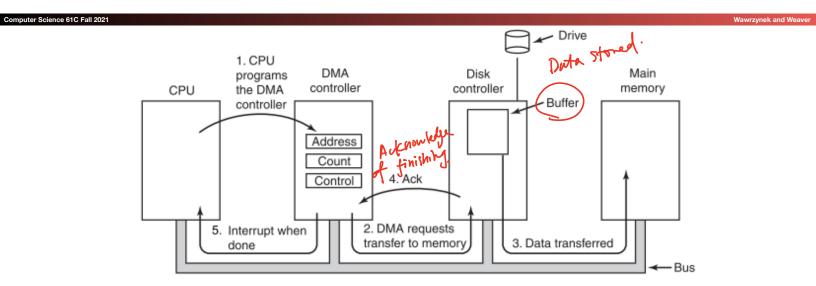


Figure 5-4. Operation of a DMA transfer.

[From Section 5.1.4 Direct Memory Access in *Modern Operating Systems* by Andrew S. Tanenbaum, Herbert Bos, 2014]

Note: On PCI/PCIe, any I/O device can be a DMA engine (controller, master)

20

- 1. Receive interrupt from device
- 2. CPU takes interrupt, initiates transfer
 - Instructs DMA engine/device to place data @ certain address
- 3. Device/DMA engine handle the transfer
 - CPU is free to execute other things
- 4. Upon completion, Device/DMA engine interrupt the CPU again

- 1. CPU decides to initiate transfer, confirms that external device is ready (by making its CSP)
- 2. CPU initiates transfer
 - Instructs DMA engine/device that data is available @ certain address
- 3. Device/DMA engine handle the transfer
 - CPU is free to execute other things
- 4. Device/DMA engine interrupt the CPU again to signal completion

DMA: Some new problems

- Where in the memory hierarchy do we plug in the DMA engine? Two extremes:
 - Between L1 and CPU:
 - Pro: Free coherency
 - Con: Trash the CPU's working set with transferred data
 - Between Last-level cache and main memory:
 - Pro: Don't mess with caches
 - Con: Need to explicitly manage coherency
- Or just treat like another node in a multiprocessor
 - Cache-coherence is supported by most modern multiprocessors
 - This is what modern computers do: the DMA engine just acts like another processor for the cache coherence mechanisms we will discuss later

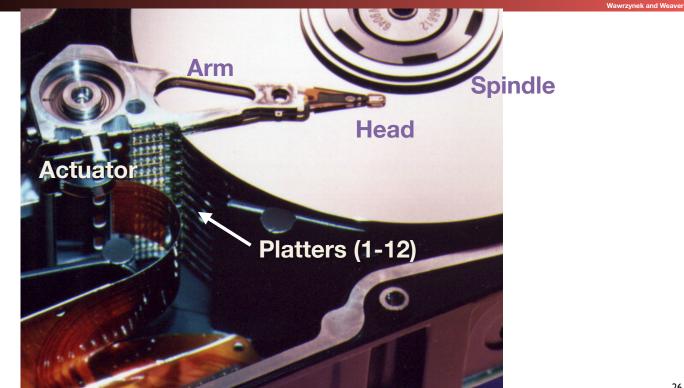
- I/O Devices and Interconnects
- Direct Memory Access
- Disks
- Networking
- And in Conclusion ...

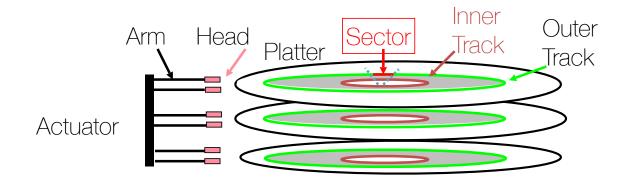
Magnetic Disk – common I/O device

Computer Science 61C Fall 2021

- A kind of computer memory
 - Information stored by magnetizing ferrite material on surface of rotating disk
 - Similar to tape recorder except digital rather than analog data
- A type of non-volatile storage
 - Retains its value without applying power to disk.
- Two Types of Magnetic Disk
 - Hard Disk Drives (HDD) faster, more dense, non-removable.

Floppy disks – slower, less dense, removable (now replaced by USB "flash drive").

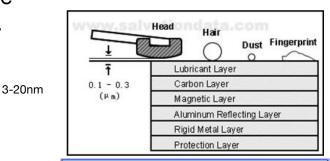

- Purpose in computer systems (Hard Drive):
 - Working file system + long-term backup for files
 - Secondary "backing store" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

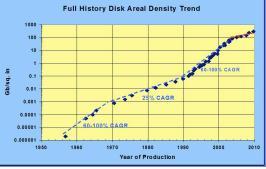

Photo of Disk Head, Arm, Actuator

Computer Science 61C Fall 2021

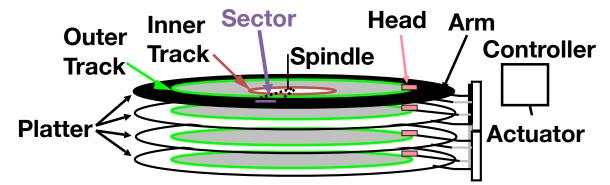
Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)
- Actuator moves head (end of arm) over track ("seek"), wait for sector rotate under head, then read or write




Hard Drives are Sealed

Computer Science 61C Fall 2021


- The closer the head to the disk, the smaller the "spot size" and thus the denser the recording.
 - Measured in Gbit/in^2
 - ~900 Gbit/in^2 is state of the art
 - Started out at 2 Kbit/in^2
 - ~450,000,000x improvement in ~60 years
- Disks are sealed to keep the dust out.
 - Heads are designed to "fly" at around 3-20nm above the surface of the disk.
 - 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head
- Some drives are even sealed with Helium
 - Lower drag than air

Berkeley EE

Disk Device Performance (1/2)

- Disk Access Time = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time = time to position the head assembly at the proper cylinder
 - Rotation Time = time for the disk to rotate to the point where the first sectors of the block to access reach the head
 - Transfer Time = time taken by the sectors of the block and any gaps between them to rotate past the head

Disk Device Performance (2/2)

- Average values to plug into the formula:
- Rotation Time: Average distance of sector from head?
 - 1/2 time of a rotation
 - 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 - 1 revolution = $1/120 \text{ sec} \Rightarrow 8.33 \text{ milliseconds}$
 - 1/2 rotation (revolution) $\Rightarrow 4.17$ ms
- Seek time: Average no. tracks to move arm?
 - Number of tracks/3 (see CS186 for the math)
 - Then, seek time = number of tracks moved × time to move across one track

Disk Performance Analysis

Computer Science 61C Fall 2021

- We have the following disk:
 - 15000 tracks, 1 ms to cross 1000 tracks
 - 15000 RPM = 4 ms per rotation
 - Want to copy 1 MB, transfer rate of 1000 MB/s
 - 1 ms controller processing time
- What is the access time?

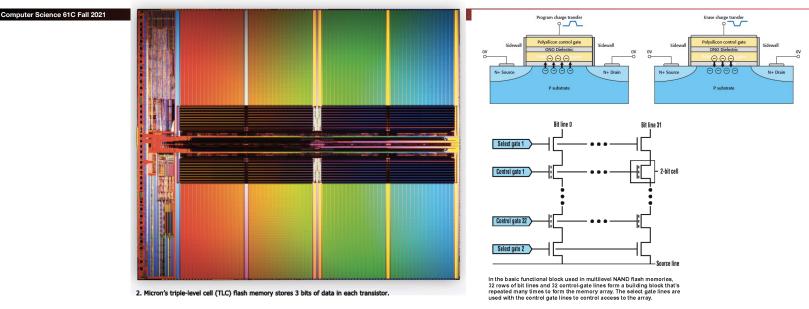
Seek = # tracks/3 * time = 15000/3 * 1ms/1000 cylinders = 5ms

Rotation = time for $\frac{1}{2}$ rotation = 4 ms / 2 = 2 ms

Transfer = Size / transfer rate = 1 MB / (1000 MB/s) = 1 ms

Controller = 1 ms

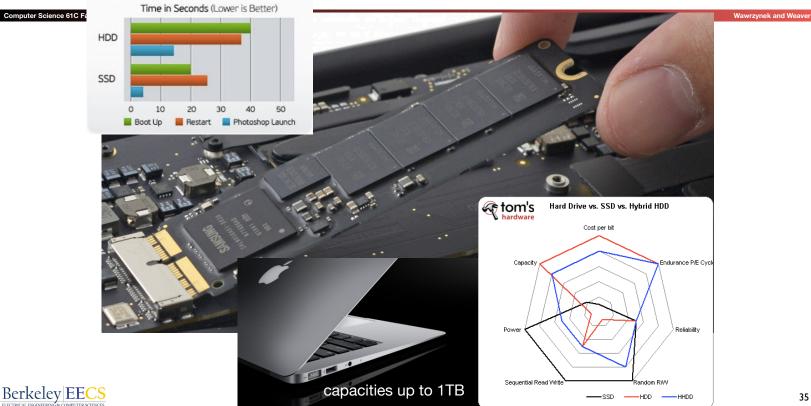
Total = 5 + 2 + 1 + 1 = 9 ms



- Performance estimates are different in practice:
- Many disks have on-disk caches, which are completely hidden from the outside world
 on disk controller, and line a cache.
 - Previous formula completely replaced with on-disk cache access time

(buffer)

Flash Memory / SSD Technology


- NMOS transistor with an additional conductor between gate and source/drain which "traps" electrons. The presence/absence is a 1 or 0
- Memory cells can withstand a limited number of program-erase cycles. Controllers use a technique called *wear leveling* to distribute writes as evenly as possible across all the flash blocks in the SSD.

Flash Memory Key to Success of Smart Phones

Flash Memory in Laptops – Solid State Drive (SSD)

- Flash bandwidth is similar to spinning disk
 - And spinning disk is still a better storage/\$ and storage/cm³
- But Flash's big advantage: no seek time! + rotate lateny
 - No additional latency for random access vs sequential access of a block
- This is huge:
 - HDD access times are measured in milliseconds, SSD times are measured in microseconds

- I/O Devices and Interconnects
- Direct Memory Access
- Disks
- Networking
- And in Conclusion ...

Networks: Talking to the Outside World

Computer Science 61C Fall 2021

Wawrzynek and Weaver

- Originally sharing I/O devices between computers
 - E.g., printers
- Then communicating between computers
 - E.g., file transfer protocol
- Then communicating between people
 - E.g., e-mail
- Then communicating between networks of computers
 - E.g., file sharing, www, ...
- Then turning multiple cheap systems into a single computer
 - Warehouse scale computing

The Internet (1962)

www.computerhistory.org/internet history

Computer Science 61C Fall 2021

- History
- DARPA? 1963: J.C.R. Licklider, while at DoD's ARPA, writes a memo describing desire to connect the computers at various research universities: Stanford, Berkeley, UCLA. ...
 - 1969 : ARPA deploys 4 "nodes" @ UCLA, SRI, Utah, & UCSB
 - 1973 Robert Kahn & Vint Cerf invent TCP, now part of the Internet Protocol Suite
- Internet growth rates
 - Exponential since start

"I iC

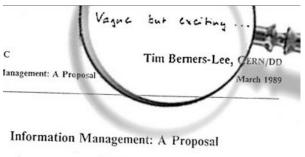
"Revolutions like this don't come along very often" Vint Cerf www.greatachievements.org/?id=3736 en.wikipedia.org/wiki/Internet Protocol Suite

Wawrzynek and Weav

The World Wide Web (1989)

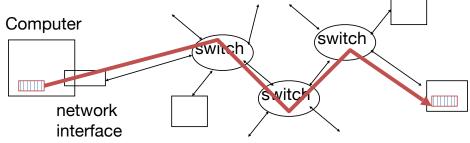
Computer Science 61C Fall 2021

en.wikipedia.org/wiki/History_of_the_World_Wide_Web


- "System of interlinked hypertext documents on the Internet"
- History
 - 1945: Vannevar Bush describes (a hypothetical electromechanical device and) hypertext system called "memex" in article
 - 1989: Sir Tim Berners-Lee proposed and implemented the first successful communication between a Hypertext Transfer Protocol (HTTP) client and server using the internet.
 - 1993: NCSA Mosaic: A graphical HTTP client
 - ~2000 Dot-com entrepreneurs rushed in, 2001 bubble burst
- Today : Access anywhere!
 Berkeley EECS

Tim Berners-Lee

World's First web server in 1990



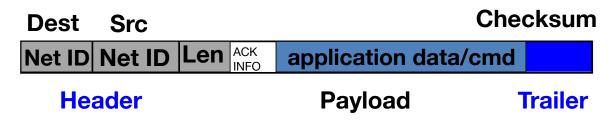
Abstract

What makes networks work?

Berkeley EEC

 links connecting switches and/or routers to each other and to computers or devices

- Ability to name the components and to route packets of information - messages - from a source to a destination
- Layering, redundancy, protocols, and encapsulation as means of <u>abstraction</u> (61C big idea)


Software Protocol to Send and Receive

Computer Science 61C Fall 2021

Berkeley EECS

Wawrzynek and Weaver

- SW Send steps
 - 1: Application copies data to OS buffer
 - 2: OS calculates checksum
 - 3: OS sends DMA request to network interface HW and says start
- SW Receive steps
 - 3: Network interface copies data from network interface HW to OS buffer, triggers interrupt
 - 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer expires)
 - 1: If OK, OS copies data to user address space, & signals application to continue

Networks are like Ogres (from Shrek)

https://www.youtube.com/watch?v=_bMcXVe8zIs

Protocols for Networks of Networks?

What does it take to send packets across the globe?

- Bits on wire or air
- Packets on wire or air
- Delivery packets within a single physical network
- Deliver packets across multiple networks
- · Ensure the destination received the data
- Create data at the sender and make use of the data at the receiver

Protocol for Networks of Networks?

Wawrzynek and Weaver

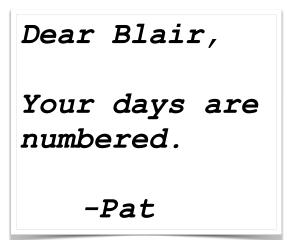
Lots to do and at multiple levels!

Use abstraction to cope with complexity of communication

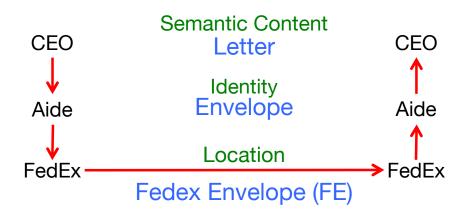
- Networks are like ogres onions
 - Hierarchy of layers network "stack":
 - Application (chat client, game, etc.)
 - Transport (TCP, UDP)
 - Network (IP)
 - Data Link Layer (ethernet)
 - Physical Link (copper, wireless, etc.)

Political
Application
Presentation
Session
Transport
Network
Data Link
Physical

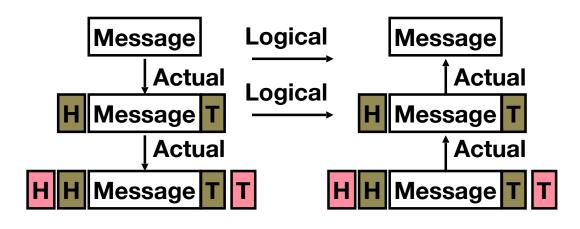
OSI 7 Layer Network Model


- Protocol: packet structure and control commands to manage communication
- Protocol families (suites): a set of cooperating protocols that implement the network stack
- Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer...
 ...but is implemented via services at the next lower level
- Encapsulation: carry higher level information within lower level "envelope"

Inspiration...


Computer Science 61C Fall 2021

- CEO A writes letter to CEO B
 - Folds letter and hands it to assistant
- Assistant:
 - · Puts letter in envelope with CEO B's full name
 - Takes to FedEx
- FedEx Office
 - Puts letter in larger envelope
 - Puts name and street address on FedEx envelope
 - Puts package on FedEx delivery truck
- FedEx delivers to other company


Computer Science 61C Fall 2021

"Peers" on each side understand the same things. No one else needs to. Lowest level has most packaging.

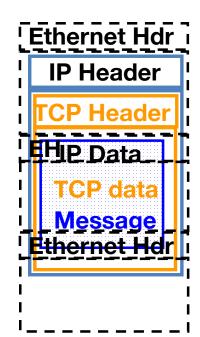
Protocol Family Concept

Physical

Each lower level of stack "encapsulates" information from layer above by adding header and trailer.

Most Popular Protocol for Network of Networks

Computer Science 61C Fall 2021


Wawrzynek and Weaver

- Transmission Control Protocol/Internet Protocol (TCP/IP)
- This protocol family is the basis of the Internet, a WAN (wide area network) protocol
 - IP makes best effort to deliver
 - Packets can be lost, corrupted
 - But corrupted packets should be turned into lost packets
 - TCP guarantees *reliable, in-order* delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN (local area network)

TCP/IP packet, Ethernet packet, protocols

- Application sends message
 - TCP breaks into 64KiB segments, adds 20B header
 - IP adds 20B header, sends to network
 - If Ethernet, broken into 1500B packets with headers, trailers

- I/O gives computers a way to interact with the world (sensing and actuation).
- I/O speed range is 100-million to one
- Polling vs. Interrupts
- DMA to avoid wasting CPU time on data transfers
- Disks for persistent storage, replaced by flash
- Network for communicating to the rest of the planet

